A High-Performance Framework for Liver Tumour Segmentation Using an AFF-U-NET
编号:3 访问权限:仅限参会人 更新:2025-11-04 14:04:23 浏览:29次 口头报告

报告开始:暂无开始时间(Asia/Amman)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Precise segmentation of liver tumors is vital for computer-aided diagnosis, treatment planning, and monitoring disease progression. In this study, we propose an Attention Feature Fusion U-Net (AFF-U Net) for automatic segmentation of liver tumors from volumetric CT scans. The dataset, consisting of NIfTI liver volumes, was normalized and resized to a uniform resolution. The AFF-U-Net employs attention gates in the decoder to selectively emphasize tumor regions while reducing false positives in low-contrast areas. The network was trained using a combination of binary cross-entropy loss and Dice coefficient optimization. Experimental results demonstrate high segmentation performance, achieving a Dice coefficient of 0.9574, IoU of 0.9402, precision of 0.8828, recall of 0.8753, and accuracy of 0.9986. Computed tomography (CT) and magnetic resonance imaging (MRI) provide detailed three dimensional liver images, enabling tumor localization and assessment of growth. However, manual segmentation is time-consuming and prone to errors, with inter-observer variability and low contrast or irregular tumors often causing inconsistencies. further confirm accurate tumor delineation, underscoring the model’s potential for clinical applications.
关键词
Liver tumor segmentation, AFF-U-Net, Attention Gate, Deep Learning, CT Scan, Medical Image Analysis.
报告人
Shanmuga Priya R
Assistant Professor Velammal college of engineering and technology Madurai

稿件作者
Shanmuga Priya R Velammal college of engineering and technology Madurai
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 11月30日 2025

    初稿截稿日期

  • 12月30日 2025

    报告提交截止日期

  • 12月30日 2025

    注册截止日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询