Multimodal AI Framework for Personalized and Health-Aware Cooking Recommendations
编号:9 访问权限:仅限参会人 更新:2025-11-04 14:05:01 浏览:111次 拓展类型2

报告开始:暂无开始时间(Asia/Amman)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
In the current era of growing interest in health-conscious eating and personalized nutrition, traditional recipe recommendation systems often fail to account for diverse user needs, ingredient availability, and practical cooking constraints. The Multimodal Artificial Intelligence (AI) Framework proposed in this study integrates and analyzes multiple data modalities—textual dietary preferences, food images, and cooking videos—to generate personalized and health-aware cooking recommendations. The framework considers individual health profiles, ingredients detected from visual inputs, and user-specific cooking skill levels inferred from video analysis to tailor recipe suggestions effectively. By leveraging multimodal deep learning algorithms, the system delivers contextually aware, precise, and adaptive recommendations. Experimental evaluations on benchmark and hybrid datasets demonstrate its effectiveness in enhancing recommendation relevance, supporting dietary compliance, and improving overall user satisfaction. These results indicate strong potential for real-world deployment in intelligent culinary assistants, personalized diet planning platforms, and smart health applications.
关键词
Personalized Recipe Recommendation, Multimodal Deep Learning, Ingredient Recognition, Cooking Skill Estimation
报告人
Swarna Suganthi S
Student Velammal College of Engineering and Technology

稿件作者
Swarna Suganthi S Velammal College of Engineering and Technology
Pooja Shree P Velammal College of Engineering and Technology,Madurai
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 11月30日 2025

    初稿截稿日期

  • 12月30日 2025

    报告提交截止日期

  • 12月30日 2025

    注册截止日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询