Residual-Enhanced Convolutional Transformer for Robust Rolling Bearing RUL Prediction under Variable Working Conditions
编号:102 访问权限:仅限参会人 更新:2025-11-10 15:29:09 浏览:12次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Rolling bearings serve as critical components in rotating machinery, where accurate remaining useful life (RUL) prediction under variable operating conditions presents a fundamental challenge for industrial predictive maintenance. This study proposes a Residual-enhanced Convolutional Transformer that combines strided convolutions with residual connections for local fault feature extraction and a Transformer encoder for long-term degradation modeling. Through systematic ablation studies, optimal hyperparameters were identified to establish an effective training strategy. Evaluation on the XJTU-SY accelerated lifetime test dataset demonstrates consistent performance with R² scores reaching 77% on the validation dataset and 81% on the testing dataset, which outperforms conventional CNN and ResNet model. The model maintains stable prediction accuracy across diverse operating conditions, confirming its robustness and practical applicability for equipment health monitoring systems.
关键词
Rolling Bearing,Prognostics Health Management,Remaining Useful Life,Residual-enhanced Convolutional Transformer
报告人
Jingyi Zhu
Student 西安交通大学

稿件作者
Jingyi Zhu 西安交通大学
怡静 刘 西安交通大学
Xingyu Wang 西安交通大学
天成 周 1. State Key Laboratory of Ship Thermal Energy and Power, Wuhan Second Ship Design and Research Institute, Wuhan 430205, China;2. School of Naval Architecture and Ocean Engineering, Huazhong Universit
Liuyang Zhang 西安交通大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询