A Fault-Mechanism Knowledge Integration-Based Method for Constructing Incipient Fault Early Warning Indicators in Bearings
编号:106 访问权限:仅限参会人 更新:2025-11-10 15:32:16 浏览:15次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Bearing fault early warning methods based on signal characteristic values are commonly used for condition monitoring of industrial equipment. However, challenges such as the difficulty in establishing multi-parameter threshold warning rules, the presence of false alarms and missed detections, and the requirement for extensive experience in signal analysis continue to pose obstacles to accurate equipment early warning. Therefore, this paper proposes a construction methodology for bearing health warning indicators that integrates knowledge of fault mechanisms, providing an application foundation for machinery condition early warning. Firstly, based on the mechanisms underlying various bearing fault types, the patterns of time-frequency signal characteristics are analyzed to identify the behavioral patterns of multiple feature indicators for major fault types. Secondly, a fused bearing health indicator termed Health Integration Indicators (HII) is constructed based on the average weighting of envelope harmonic energy amplitude ratios. The 3σ upper threshold warning model using baseline values from healthy data is established to distinguish between the healthy and warning states of bearing operation. Then, the relative influence weight of each characteristic index on HII is quantified to help confirm the fault type of the bearing and realize the interpretable auxiliary diagnosis of fault type. Finally, validation is conducted using the IMS Bearing Data and the Case Western Reserve University (CWRU) dataset. Experimental results demonstrate that the proposed indicator offers more robust analytical outcomes and quantitative justification than warning methods based on kurtosis and RMS values.
 
关键词
Fault mechanism, Health integration indicators, Condition monitoring, Early warning, Fault diagnosis
报告人
Changkun Han
Engineer Beizisuo (Beijing) Technology Development Co., Ltd Beijing, China

稿件作者
Changkun Han Beizisuo (Beijing) Technology Development Co., Ltd Beijing, China
Yan Li Beizisuo (Beijing) Technology Development Co., Ltd
Hengtao Ma Beizisuo (Beijing) Technology Development Co., Ltd
Wenxu Yang Beizisuo (Beijing) Technology Development Co., Ltd
Hui Xu Beizisuo (Beijing) Technology Development Co., Ltd
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询