A Sample Enhanced Fault Diagnosis Method for Rotating Machinery under Class-Imbalanced Scenario
编号:110 访问权限:仅限参会人 更新:2025-11-10 15:35:26 浏览:46次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
In the field of intelligent fault diagnosis of industrial equipment, fault samples are scarce and the labeling cost is high, resulting in limited available training data and an imbalanced distribution (with more normal samples and fewer fault samples in the training data). Based on deep learning theory, this paper adopts a Siamese data augmentation strategy to address the problem of sample imbalance and proposes an improved Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) data generation method. First, the generator is redesigned with a transposed convolutional network to improve the quality of generated samples; then, a polynomial loss function and regularization techniques are introduced to alleviate the problem of mode collapse during training; finally, the Case Western Reserve University bearing dataset and the Dalian centrifugal pump bearing dataset are used for experimental verification, and iterative correction is applied to obtain generated data that better match the characteristics of real data. The results show that the proposed fault sample generation method can alleviate the data imbalance problem and effectively improve diagnostic accuracy.
关键词
deep learning,class imbalance,data augmentation,generative adversarial network
报告人
Wei Liu
Student Beijing University of Chemical Technology

稿件作者
Wei Liu Beijing University of Chemical Technology
Chen Kai Ltd.;Chongqing Rail Transit Operation Co.
Zhicheng Wei Chongqing Rail Transit Operation Co., Ltd.
Huaqing Wang Beijing university of chemical technology
Tianliang Zhao Beijing University of Chemical Technology
Liuyang song Beijing university of chemical technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询