Fusion of Liquid Neural Networks and Multi-Head Attention for State of Health Estimation of Lithium-ion Battery Packs
编号:120 访问权限:仅限参会人 更新:2025-11-10 15:40:42 浏览:78次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
This paper proposes a novel fusion architecture that combines Liquid Neural Networks (LNN) with multi-head attention mechanisms for accurate State of Health (SOH) estimation of lithium-ion battery packs. The method employs learnable liquid time constants (LTC) that enable dynamic adjustment of memory characteristics based on input temporal patterns, while the multi-head attention mechanism identifies critical time steps that contribute most to SOH prediction. Additionally, we introduce an innovative coverage-averaging mapping strategy that transforms overlapping window predictions into smooth, cycle-level SOH estimates, eliminating the boundary discontinuities commonly observed in traditional sliding window approaches. Experimental evaluation on real battery data demonstrates competitive performance with an RMSE of 0.0072 and R² of 0.9248. The results show that the proposed method successfully captures the complex temporal dynamics of battery degradation processes while maintaining computational efficiency suitable for real-time deployment in battery management systems.
关键词
State of Health (SOH),Liquid Neural Networks (LNN),Multi-head attention
报告人
Xinyi Zhang
Student Harbin Institute of Technology

稿件作者
Xinyi Zhang Harbin Institute of Technology
Feiran Xu Chengdu Aircraft Design & Research Institute
Mingxuan Ge Chengdu Aircraft Design & Research Institute
Pengchao Zou Chengdu Aircraft Design & Research Institute
Yuchen Song Harbin Institute of Technology
Datong Liu Harbin Institute of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询