Contrastive Learning Enhanced Transfer Framework for Fault Diagnosis of Aerospace Electromechanical Systems
编号:124 访问权限:仅限参会人 更新:2025-11-10 15:46:26 浏览:38次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Fault diagnosis of aerospace electromechanical systems in orbit faces the dual challenges of data scarcity and domain discrepancy. To address this problem, a contrastive learning enhanced transfer framework is proposed. Large-scale general bearing data are employed for self-supervised pretraining to obtain transferable representations, which are then adapted with a limited number of labeled CMG samples. The model is subsequently validated on in-orbit CMG data under real operating conditions. Experimental results demonstrate that the proposed method substantially improves diagnostic performance compared with traditional approaches, achieving a relative gain of about 24.1%. These findings highlight the effectiveness of integrating contrastive learning with transfer learning to overcome small-sample and cross-domain challenges, and provide a feasible pathway for in-orbit health management of aerospace electromechanical systems.
关键词
contrastive learning,transfer learning,fault diagnosis,aerospace electromechanical systems
报告人
Hejun Cheng
Student Beihang University

稿件作者
Hejun Cheng Beihang University
Diyin Tang Beihang University (Beijing University of Aeronautics and Astronautics)
Danyang Han Beihang University (Beijing University of Aeronautics and Astronautics)
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询