Remaining Useful Life Prediction of Aero-engine Based on Temporal Convolution Network and Attention Mechanism
编号:129 访问权限:仅限参会人 更新:2025-11-10 15:49:06 浏览:19次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Accurately predicting the Remaining Useful Life (RUL) of aero-engines is of paramount importance for ensuring the safety and reliability of aircraft operations. Existing deep learning–based approaches primarily focus on extracting temporal features from engine data, yet they often overlook the heterogeneous importance of internal features, thereby constraining predictive accuracy. To address this limitation, this study proposes an end-to-end predictive framework that integrates Temporal Convolutional Networks (TCN) with attention mechanisms. Specifically, the raw engine data are first encoded through a self-attention mechanism; subsequently, the TCN is employed to capture high-dimensional temporal representations; finally, a Coordinate Attention (CA) mechanism is introduced to refine feature modeling along both temporal and spatial dimensions, enabling precise localization of critical information and thereby enhancing RUL prediction performance. Experimental results on the publicly available CMAPSS dataset demonstrate that the proposed method substantially outperforms state-of-the-art approaches in predictive accuracy, thereby validating its effectiveness and superiority.
关键词
Remaining Useful Life Prediction,Aero-Engines,Attention Mechanism
报告人
Shaoqing Liu
Engineer Chinese Flight Test Establishment

稿件作者
Shaoqing Liu Chinese Flight Test Establishment
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询