Research on Anomaly Data Preprocessing Technology for Deep Learning Soft Sensor Models Facing Missing Data and Fault Data
编号:139 访问权限:仅限参会人 更新:2025-11-10 16:00:52 浏览:34次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件 附属文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Deep learning-based soft sensor technology plays an important role in industrial process monitoring, yet anomalous data such as sensor faults and missing values can severely compromise the predictive performance and reliability of the models. Most existing approaches address only a single type of anomaly, making it difficult to cope with the complex scenarios of multiple coexisting anomalies in real industrial environments. To overcome this limitation, this paper proposes a unified two-stage data preprocessing strategy that integrates anomaly detection and isolation with data reconstruction. In the first stage, a parallel Long Short-Term Memory (LSTM)–Residual Network (ResNet) architecture is employed for fault detection and isolation to identify and separate abnormal data. In the second stage, an improved masked autoencoder model is applied to reconstruct the data at the detected anomaly positions, thereby leveraging the complementary strengths of fault detection and data reconstruction across different anomaly magnitudes. Experimental results on the Tennessee Eastman Process dataset demonstrate that the proposed method achieves an R² of 0.9761, a MAPE of 0.0636%, and an RMSE of 3.6915 in reconstructing anomalous data caused by both sensor faults and missing values.
关键词
Soft sensor,Fault detection,Data reconstruction,Masked autoencoder
报告人
Wenbin Zheng
ieee member Harbin Institute of Technology;School of Electronics and Information Engineering; Harbin 150080; P.R. China

稿件作者
Jian Xue Harbin Institute of Technology
Lei Feng Department of Measurement and Control Engineering at the School of Electronics and Information Engineering
Wenlong Hu Harbin Institute of Technology
Yuanzi Li Harbin Institute of Technology
Wenbin Zheng Harbin Institute of Technology;School of Electronics and Information Engineering; Harbin 150080; P.R. China
Bing Liu Harbin Institute of Technology;School of Electronics and Information Engineering
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询