A Phase Adaptive Approach to Self-Data-Driven Online Remaining Useful Life Prediction
编号:140 访问权限:仅限参会人 更新:2025-11-17 16:26:02 浏览:34次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Self-data-driven methods for Remaining Useful Life (RUL) prediction are promising where failure data is scarce. However, conventional batch-update approaches are computationally inefficient for online scenarios and their fixed models fail to capture multi-stage degradation. To overcome these limitations, this paper proposes a novel two-stage framework. The first, offline stage uses a Phase Adaptive Expectation Maximization (PAEM) algorithm, which identifies degradation phases to achieve robust parameter initialization for a library of candidate models. The second, online stage employs an Entropy-Driven Particle Filter (EDPF) to adaptively fuse these models in real-time, tracking time-varying dynamics without reusing historical data. Validation on the XJTU-SY bearing dataset demonstrates that the framework significantly improves prediction accuracy and stability over traditional methods, providing a computationally efficient and robust solution for online RUL prediction.
关键词
RUL prediction;Self-data-driven method;Particle filtering;Online Scenarios;Time-Varying Degradation
报告人
Runzhong Fang
Student Xi'an Jiaotong University

稿件作者
Runzhong Fang Xi'an Jiaotong University
Bing Yang Xi'an Jiaotong University
Yaguo Lei Xi'an Jiaotong University
Yang Gao Xi’an Jiaotong University;CRRC Qishuyan Institute Co.,LTD
Xiang Li Xi'an Jiaotong University
Naipeng Li Xi'an Jiaotong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询