Imbalanced Fault Diagnosis of Rolling Bearings Using an Adaptive Fusion-based Multi-Domain Double-Attention Diffusion Model
编号:144 访问权限:仅限参会人 更新:2025-11-10 16:03:59 浏览:27次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Accurate fault diagnosis of rolling bearings is critical yet challenging due to severe data imbalance in practical industrial scenarios. To address this issue, we propose a novel adaptive fusion-based multi-domain double-attention diffusion model for imbalanced fault diagnosis. The multi-domain double-attention diffusion leverages a dual-attention mechanism to generate high-quality fault signals, while the adaptive fusion module integrates multi-domain features through cross-attention to enhance representation learning. Extensive experiments on the CWRU dataset demonstrate significant performance improvements, achieving 99.57% accuracy under a severe imbalance ratio of 1:100, confirming the method's effectiveness and generalization capability.
 
关键词
Rolling bearing,Fault diagnosis,Data imbalance,Dual-attention mechanism,Multi-domain fusion
报告人
Yaqiang Ji
Lecturer Dongguan University of Technology

稿件作者
Yaqiang Ji Dongguan University of Technology
Shixi Cai Dongguan University of Technology
Kun Long Dongguan University of Technology
Jianyu Long Dongguan University of Technology
Chuan Li Dongguan University of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询