Radar Signal-Level Model Parallel Acceleration Method Based on Multi-GPU Architecture
编号:148 访问权限:仅限参会人 更新:2025-11-10 16:06:34 浏览:78次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Signal-level radar modeling faces significant computational bottlenecks due to massive datasets and intensive operations including pulse compression, moving target indication (MTI), moving target detection (MTD), and constant false alarm rate (CFAR) processing. Traditional CPU-based implementations exhibit poor real-time performance, while single-GPU solutions suffer from memory bandwidth limitations and resource contention. This paper presents a novel multi-GPU parallel acceleration framework that leverages heterogeneous CPU-GPU architecture to overcome these scalability challenges. The proposed method employs an odd-even frame allocation strategy to distribute radar echo data across two GPUs, enabling simultaneous processing of independent frames. Optimized parallel computing architectures are developed for core signal processing modules, utilizing CUDA framework optimizations and Direct Memory Access (DMA) technology for efficient data transfer. Experimental results on a CPU with dual GPUs demonstrate significant performance improvements: pulse compression achieves 102.88× acceleration, MTI reaches 164× speedup, and CFAR obtains 153.8× acceleration compared to CPU-only implementations. The overall system achieves 109.6× acceleration while maintaining signal processing accuracy, enabling real-time radar simulation capabilities for next-generation radar system development.
关键词
radar signal-level model,heterogeneous computing,parallel processing,multi-GPU
报告人
Yilin Liu
Student Harbin Institute of Technology

稿件作者
Yilin Liu Harbin Institute of Technology
Ruiyang Zhang Harbin Institute of Technology
Yaoyao Lu Beijing Simulation Center
Shengmin Ai Harbin Institute of Technology
Benkuan Wang Harbin Institute of Technology
Datong Liu Harbin Institute of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询