Digital Twin-Transfer Learning Jointly Driven Intelligent Diagnosis Model for Pumps
编号:152 访问权限:仅限参会人 更新:2025-11-20 10:39:50 浏览:65次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
  Many industrial rotating machinery operate in harsh environments, and due to the limitations of existing data acquisition systems, collecting large volumes of labeled data for training intelligent fault diagnosis models in real-world operational scenarios is often impractical. To address this challenge of data scarcity, this study takes pumps as a typical example and proposes an intelligent fault diagnosis model based on digital twin-assisted deep transfer learning. The model utilizes patch time series Transformer (patchTST) to extract features from simulated one-dimensional time-series data and combines it with limited real-world data. Through domain adversarial adaptation and fine-tuning strategies, a fault diagnosis model is constructed. The practicality of the model has been verified to effectively reduce the reliance on real labeled data required by conventional deep learning diagnosis models using the Kumar centrifugal pump dataset.
关键词
Digital twin,Transformer,Domain adversarial,Fine tune,Fault diagnosis
报告人
Zehao Li
student Guangdong University of Technology

稿件作者
Zhuyun Chen Guangdong University of Technology
Zehao Li Guangdong University of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询