A Large Time Series Model with Dynamic Boundary Quantization and STL for Water Supply Flow Forecasting
编号:154 访问权限:仅限参会人 更新:2025-11-10 16:15:06 浏览:66次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Water supply flow forecasting is crucial for urban water management and pipeline optimization. However, existing methods often fail to handle complex temporal patterns and structural components effectively, limiting prediction accuracy. To address these issues, we propose a large time series model(LTSM) with dynamic boundary quantization and Seasonal-Trend decomposition using Loess(STL) to enhance modeling precision and structural adaptability. Specifically, the input time series is first normalized via mean-scaling and decomposed into trend, seasonal, and residual components using STL. Each component is then discretized using a dynamic quantization strategy guided by local statistical features , and the resulting token sequences are concatenated and fed into the LTSM. During inference, the predicted token sequences are decoded, dequantized, and recombined to form the final forecast.Experiments on water flow data demonstrate that our method outperforms SOTA models in terms of MAE, MSE, and R². 
关键词
dynamic boundary quantization,flow forecasting,large time series model,Seasonal-Trend decomposition using Loess
报告人
Juan Xu
Professor Hefei University of Technology

稿件作者
Juan Xu Hefei University of Technology
Hanqi Gui Hefei University of Technology
Mingguang Dai Jianghuai Advance Technology Center
Peng Liu Luoyang Bearing Research Institute Co., Ltd
Xinhang Yu Hefei University of Technology
Xiaochuan Li Hefei University of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询