Prediction of service performance of angular contact ball bearings using a Back Propagation neural network model
编号:156 访问权限:仅限参会人 更新:2025-11-10 17:06:46 浏览:53次 口头报告

报告开始:2025年11月22日 17:40(Asia/Shanghai)

报告时间:20min

所在会场:[S2] Parallel Session 2 [S2-1] Parallel Session 2-22 PM

暂无文件

摘要
As critical fundamental components in high-end equipment, angular contact ball bearings undergo service performance degradation that directly impacts the operational accuracy and reliability of the entire system. Traditional numerical methods suffer from low computational efficiency, whereas simplified theoretical frameworks cannot accurately capture the dynamic coupling mechanisms between bearing assembly parameters and service performance. This limitation leads to an inevitable trade-off between efficiency and accuracy in predicting dynamic responses. To address this issue, we propose a Backpro Pagation (BP) neural network–finite element modeling framework. First, a dynamic model of the angular contact ball bearing is constructed. Second, representative assembly process parameters are selected as inputs, and performance indicators are defined as outputs, with the dataset generated via finite element simulations. Third, a surrogate model is developed to predict bearing service performance. Finally, the effectiveness and accuracy of the surrogate model are validated experimentally, thereby providing a solid theoretical foundation and technical support for condition-based maintenance and intelligent health management of bearings.
关键词
bearings, surrogate model , neural network , finite element analysis
报告人
暂无
稿件作者
yicong wang Foshan University
Lingli Jiang Foshan University
Wenjun Shu Foshan University
Yi Zeng Foshan University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询