Contrastive Attention Network based Intelligent Soft Sensor for Bearing Angular Misalignment Measurement
编号:157 访问权限:仅限参会人 更新:2025-11-10 22:24:07 浏览:47次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Angular misalignment is one of the factors that can lead to premature bearing failure. However, existing methods struggle to monitor the degree of misalignment in real time due to the difficulty of installing sensors on such precise equipment. To address this issue, this study proposes an intelligent soft sensor that predicts the degree of angular misalignment based on vibration signals. Specifically, a contrastive attention network is designed to extract latent patterns embedded within the vibration signals. Furthermore, a bearing angular misalignment experimental platform is established. Experimental results demonstrate that the proposed method achieves favorable performance in both measurement accuracy and response speed.
关键词
bearing assembly error,angular misalignment,intelligent soft sensor,virtual measurement,deep learning
报告人
Chao Zhao
Associate Professor Northeastern University

稿件作者
Chao Zhao Northeastern University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询