Physics Informed Deep Learning for Error Compensation of Vibration Signals
编号:16 访问权限:仅限参会人 更新:2025-11-10 10:41:43 浏览:53次 口头报告

报告开始:2025年11月22日 15:20(Asia/Shanghai)

报告时间:20min

所在会场:[S2] Parallel Session 2 [S2-1] Parallel Session 2-22 PM

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
This paper presents a physics informed artificial intelligence approach for reducing the dynamic error of a sensor, which receives vibration signals. Therefore, a two-stage process is proposed, which employs in the first step a Deep Neural Network (DNN) as an autoencoder which is pre-trained to the sensor’s physical forward dynamics. In the second step a deep learning algorithm iteratively reconstructs the vibration signal by adapting the previously defined underlying deep neural network weights. A case study is carried out by the analysis of a disturbed piezoelectric acceleration sensor signal. The validation results demonstrate that the proposed approach significantly reduces dynamic error and outperforms the most common deep learning approach.
关键词
dynamic error compensation,deep learning,vibration signal,inverse problem
报告人
Dmitrij Filenko
research associate Hochschule Pforzheim

稿件作者
Dmitrij Filenko Hochschule Pforzheim
Alexander Hetznecker Hochschule Pforzheim
Thomas Greiner Hochschule Pforzheim
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询