Lightweight Gear Defect Detection Method Based on HPF-YOLO
编号:160 访问权限:仅限参会人 更新:2025-11-13 15:45:42 浏览:43次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
In response to the tight gear arrangement and the high accuracy required for recognition in gear transmission systems, this paper proposes an improved lightweight model for gear detection, called HPF-YOLO. Built upon YOLOv11, the model incorporates modules such as wavelet transform and multi-scale feature fusion, and optimizes key components like feature extraction and fusion. Experiments are conducted on a dedicated dataset simulating a gear transmission system. The results show that the proposed model outperforms the benchmark YOLOv11 in both accuracy and speed.
关键词
Gear; Wavelet convolution; Feature fusion; YOLO
报告人
li xiaolong
student Nanjing University of Science and Technology

稿件作者
Xiaolong Li Nanjing University of Science and Technology
Ke Liu Ltd;Hangzhou Zhiyuan Research Institute Co.
Zhiguo Pan Ltd;Hangzhou Zhiyuan Research Institute Co.
Manyi Wang School of Mechanical Engineering; NanJing University of Science and Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询