Research on Wafer Surface Defect Detection Based on YOLOv8 and TensorRT
编号:17 访问权限:仅限参会人 更新:2025-11-10 10:42:22 浏览:86次 口头报告

报告开始:2025年11月22日 16:00(Asia/Shanghai)

报告时间:20min

所在会场:[S2] Parallel Session 2 [S2-1] Parallel Session 2-22 PM

暂无文件

摘要
As a cornerstone of the semiconductor industry, the surface quality of wafers directly impacts chip yield and performance. Minute defects, such as chipping, edge chipping, and positive chipping, can lead to circuit failure. Traditional optical inspection methods, which rely on human operators, suffer from low efficiency, subjectivity, and operator fatigue, making them inadequate for the high-precision and high-efficiency demands of modern semiconductor manufacturing. This paper introduces a real-time detection method based on the YOLOv8 object detection algorithm and the NVIDIA TensorRT inference accelerator. This method leverages YOLOv8's superior detection accuracy and speed, combined with TensorRT's model optimization and acceleration capabilities, achieving a mean average precision mAP of up to 98.2% and an inference speed of 217 FPS. Experimental results demonstrate that this system can efficiently and accurately locate and classify wafer defects on real-time production lines, providing a reliable embedded solution for improving quality control processes in semiconductor manufacturing.
关键词
defect detection; wafer surface; YOLOv8; TensorRT;
报告人
Lin Xu
student Jiangsu Normal University

稿件作者
Lin Xu Jiangsu Normal University
Pengcheng Ji Jiangsu Normal University
Guo Ye Jiangsu Normal University
Zhenzhi He Jiangsu Normal University
Xiangning Lu Jiangsu Normal University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询