Uncertainty Quantification of Success Rate of UAV Autonomous Navigation Mission Based on Multi-Scale Entropy Fusion
编号:18 访问权限:仅限参会人 更新:2025-11-10 10:53:48 浏览:76次 口头报告

报告开始:2025年11月22日 16:20(Asia/Shanghai)

报告时间:20min

所在会场:[S2] Parallel Session 2 [S2-1] Parallel Session 2-22 PM

暂无文件

摘要
Unmanned Aerial Vehicle (UAV) performing autonomous navigation exhibit high sensitivity to scene perturbations, even minor changes can drive mission outcomes to diverge sharply between success and failure. Therefore, constructing a mapping between scene parameters and the success rate of autonomous navigation missions can provide quantitative evidence for mission evaluation. However, the parameter space of autonomous navigation is effectively unbounded, and physical or simulation tests yield only discrete, single-trial observations linking parameters to success rates. Consequently, commonly used dense-sampling methods struggle to deliver stable and interpretable estimates with continuous coverage of the parameter space. To address this, the paper proposes a multi-scale entropy fusion–based method for constructing an uncertainty field that maps discrete parameters and execution outcomes to a full-domain, continuous parameter–success-rate estimation field. Simultaneously, the fused entropy is used as a spatial weight to suppress over-extrapolation in sparse regions, and Gaussian processes with kernel interpolation are employed for continuous reconstruction, thereby quantifying the relationship between parameters and success rate at arbitrary locations. Finally, experimental results on simulation-generated mission data demonstrate that the proposed method can stably construct a quantitative mapping between parameters and mission success under limited trials, and outperforms conventional baselines.
关键词
success-rate prediction,uncertainty quantification,multi-scale entropy fusion,deep learning enhancement
报告人
Zhuo Li
Student Harbin Institute of Technology

稿件作者
Zhuo Li Harbin Institute of Technology
Yuchen Song Harbin Institute of Technology
Datong Liu Harbin Institute of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询