Digital Twin-driven Adversarial Domain Generalization with Diffusion model for Beam Chopper Fault Diagnosis
编号:19 访问权限:仅限参会人 更新:2025-11-10 10:54:19 浏览:39次 口头报告

报告开始:2025年11月22日 16:40(Asia/Shanghai)

报告时间:20min

所在会场:[S2] Parallel Session 2 [S2-1] Parallel Session 2-22 PM

暂无文件

摘要
Beam choppers, as critical rotating components for regulating high-energy particle beams, are essential for maintaining the stable operation of large-scale scientific facilities through effective fault diagnosis. Conventional diagnostic methods often assume identical distributions between training and testing datasets and require abundant labeled samples to build robust models—assumptions that rarely hold in practical high-energy beam chopper scenarios. To address these limitations, we propose a digital twin-driven adversarial domain generalization with a diffusion model (DTADG) framework enhanced. First, a a denoising diffusion probabilistic model is trained exclusively on normal operating data to generate digital twin data. Then, these features are mixed and fed into a synthesize latent-space representations. By treating real measured data as the target domain and the generated twin data as the source domain, we develop an improved adversarial domain generalization strategy to test its generalization capability. Experimental evaluation on beam chopper fault diagnosis demonstrates that DTADG delivers superior diagnostic performance under distribution shift and limited data conditions, offering substantial benefits for fault detection in high-energy beam choppers.
关键词
Domain generalization,Diffusion model,Digital twin,Generalization capability
报告人
暂无
稿件作者
自强 蒲 重庆工商大学
光银 周 重庆大学
雯 蔡 重庆工商大学
川 李 重庆工商大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询