A Game-theoretic Cross-modal Competition Framework with Permutation-based Latent Regularization
编号:20 访问权限:仅限参会人 更新:2025-11-10 10:54:43 浏览:42次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Multimodal learning often faces modality competition, where stronger modalities dominate and degrade overall performance. To address this, we propose the Cross-modal Competition Regularizer with Permutation - based Latent Regularizer (CCR-PLR), a game-theoretic information-driven framework that balances modality contributions. CCR models learning as a constant-sum game, encouraging each modality to enhance unique, task-relevant information while reducing redundancy. The PLR applies within-batch latent permutations and measures prediction shifts using Jensen - Shannon Divergence to approximate combinational mutual information efficiently. Combined with modality-specific and shared encoders, CCR-PLR explicitly optimizes complementary and discriminative representations. Experiments on a dual-modal pressure - vibration dataset show CCR-PLR consistently surpasses ResNet, Conformer, and CNN baselines in accuracy and robustness under corrupted inputs. Ablation results further verify that CCR-PLR effectively mitigates modality imbalance and improves generalization in cross-modal learning.
关键词
Fault Diagnosis
报告人
Xiaolong Li
Mr. Hefei University of Technology

稿件作者
Xiaolong Li Hefei University of Technology
Xiaochuan Li Hefei University of Technology
Xu Juan Hefei University of Technology
川 李 重庆工商大学
David Mba Birmingham City University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询