PIGAN: Physics-Informed Generative Adversarial Network for Fault Data Generation With Dynamic Model Priors
编号:69 访问权限:仅限参会人 更新:2025-11-10 11:35:58 浏览:12次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Despite rapid progress in intelligent gear fault diagnosis, it still faces two bottlenecks, namely the scarcity of labeled fault data and the computational burden of digital-twin-based approaches. To address this, we propose a physics-informed generative adversarial network (PIGAN) that integrates physical priors with data-driven learning. A Fourier feature mapping layer encodes multi-scale frequency content to better capture gear-meshing harmonics and transient impacts, while a physics-informed neural network imposes a gear dynamic model as a hard constraint to enforce governing laws. An adversarial framework further learns latent distributions from a few samples, thereby enhancing generalization and sample diversity. Experiments on a two-stage gear transmission system show that PIGAN generates physically consistent vibration data with high time- and frequency-domain fidelity, proving the effectiveness of the proposed method.
关键词
Data augmentation; GAN; PINN; Gear dynamic model
报告人
Hongqi Lin
Fault Diagnosis Guangdong Provincial Key Laboratory of Computer Integrated Manufacturing Guangdong University of Technology

稿件作者
Hongqi Lin Guangdong Provincial Key Laboratory of Computer Integrated Manufacturing Guangdong University of Technology
Bohui Ding PowerChina Renewable Energy Co., Ltd. Yunnan Branch
Gengfu Zhang PowerChina Renewable Energy Co., Ltd. Yunnan Branch
Zhuyun Chen Guangdong Provincial Key Laboratory of Computer Integrated Manufacturing Guangdong University of Technology
Junyu Qi Reutlingen University
Yun Kong Beijing Institute of Technology
Qingyu Zhuang Guangdong University of Technology
Weihua Li South China University of Technology
Qiang Liu Guangdong Provincial Key Laboratory of Computer Integrated Manufacturing Guangdong University of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询