Multivariate Time Series Anomaly Detection based on Time-Frequency Combination
编号:7 访问权限:仅限参会人 更新:2025-11-10 10:34:55 浏览:78次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Time series anomaly detection is a core task for ensuring the stability of modern industrial, financial, and operational systems. However, most existing methods model data in the time domain, which presents challenges in capturing global periodic anomalies and subtle structural changes, and they are susceptible to local noise. To address these limitations, we propose a novel unsupervised learning framework for anomaly detection named Multivariate time frequency anomaly detection(MTFAD). The core idea of MTFAD is to shift the main analysis process from the traditional time domain to the frequency domain. Specifically, the framework first maps the input sequence to the frequency domain via Fourier Transform and innovatively introduces a Frequency Patching strategy to decompose the spectrum into multiple frequency patches representing different frequency bands. The model's training is jointly supervised by a time-frequency dual-loss function, ensuring consistency in both the waveform and spectral structure of the reconstructed signal. Our experiments on multiple public datasets show that MTFAD can effectively identify diverse anomaly patterns and surpasses current state-of-the-art methods on several key metrics, providing a new perspective for time series anomaly detection by combining time and frequency domains.
关键词
time series, anomaly detection, frequency-domain modeling, unsupervised learning
报告人
黄 泽如
学生 深圳大学

稿件作者
黄 泽如 深圳大学
Hao Wu Shenzhen University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询