DS-Evidence-Theory-Based Order Spectrum Sparse Representation Classification for Drivetrain Fault Diagnosis Under Variable Working Conditions
编号:71 访问权限:仅限参会人 更新:2025-11-10 11:36:40 浏览:16次 口头报告

报告开始:2025年11月23日 09:30(Asia/Shanghai)

报告时间:20min

所在会场:[S3] Parallel Session 3 [S3-2] Parallel Session 3-23 AM

暂无文件

摘要
To address the challenges of fault diagnosis in wind turbine drivetrains under variable speed conditions, this paper proposes a novel method called Dempster-Shafer (DS) evidence theory-based order spectrum sparse representation classification (DS-OSSRC). By integrating multi-sensor data, the proposed approach combines order spectrum analysis and sparse representation classification to extract discriminative speed-invariant features for classifier-free intelligent diagnosis. A decision-level fusion strategy based on DS evidence theory is proposed to effectively resolve the conflicts among individual channel outputs, enhancing diagnostic accuracy and robustness. Experimental validation on a wind turbine drivetrain dataset demonstrates that the proposed method achieves 99.52% accuracy under varying working conditions and significantly outperforms single-sensor-based models and two other fusion strategies, especially in noisy environments. The proposed DS-OSSRC method offers a computationally efficient and reliable solution for cross-condition transfer fault diagnosis.
关键词
fault diagnosis,order spectrum analysis,sparse representation classification,Dempster-Shafer evidence theory,variable working conditions
报告人
Junhui Qi
Graduate Student Beijing Institute of Technology

稿件作者
Junhui Qi Beijing Institute of Technology
Yufan Lv Beijing Institute of Technology
Yun Kong Beijing Institute of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询