HSU-YOLO: High-Precision Small Object Detection for UAV Imagery
编号:92 访问权限:仅限参会人 更新:2025-11-10 15:15:07 浏览:11次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Conventional object detectors exhibit limited accuracy when tasked with detecting small objects in UAV imagery, this paper introduces a high-precision small object detection algorithm for UAV Imagery (HSU-YOLO). Firstly, the Cross Stage Partial-Grouping Multi-Scale Feature Fusion (CSP-GMSF2) module is designed through grouped convolution and cross-scale fusion strategies to achieve multi-scale feature fusion, enabling the algorithum to better extract features of small objects. Furthermore, a lightweight detection head specifically designed for tiny object detection is proposed. To improve small object feature extraction and reduce the detection head's computational complexity, detail-enhanced convolution and parameter sharing are integrated. Moreover, the DySample operator is adopted to optimize the up sampling process by generating content-aware sampling points, significantly enhancing the feature reconstruction fidelity of small objects in complex environments. Evaluated on the VisDrone2019 dataset, the proposed algorithm demonstrates superior performance to YOLO11, achieving gains of 5.0% (mAP@0.5), 4.1% (mAP@0.5:0.95), 6.6% (precision), and 4.0% (recall), while simultaneously reducing parameter counts. Meanwhile, compared with the newly proposed small object detection algorithums, the proposed algorithum achieves superior recognition precision. These improvements indicate effective balancing of detection accuracy and inference efficiency for UAV small object detection, with substantial practical utility.
 
关键词
UAV,Multi-Scale Feature Fusion,Small Object Detection,Parameter Sharing,DySample
报告人
Moran Sun
硕士研究生 Harbin Institute of Technology

稿件作者
Moran Sun Harbin Institute of Technology
Yilin Liu Harbin Institute of Technology
Xinyi Zhao Harbin Institute of Technology
Benkuan Wang Harbin Institute of Technology
Datong Liu Harbin Institute of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询