Reconstruction of High-resolution Magnetic Field from Sparse Measurements Based on A Super-Resolution Neural Network
编号:93 访问权限:仅限参会人 更新:2025-11-10 15:15:29 浏览:9次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
This paper proposes a super-resolution reconstruction network designed to recover complete magnetic field distributions from sparse magnetic field measurements. The network incorporates two down-sampling convolutional modules after the input layer, enabling it to directly process sparse high-resolution magnetic field data and reconstruct comprehensive magnetic field maps. To evaluate the model’s performance, a training dataset was generated using simulated magnetic field images, while real magnetic field images were collected through a custom-built experimental setup for testing. Experimental results demonstrate that the proposed method achieves effective reconstruction in both simulated and real-world scenarios, validating its accuracy and practical applicability.
关键词
super-resolution imaging, magnetic field detection, sparse distribution
报告人
Jiawei Xu
Mr.s Anhui University

稿件作者
Jiawei Xu Anhui University
Xaioxian Wang Anhui University
Siliang Lu Anhui University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询