Capacity Prediction of Lithium-ion Batteries Based on Multivariate Time Series Modeling with Partial Charging Curves
编号:94 访问权限:仅限参会人 更新:2025-11-10 15:15:56 浏览:10次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Performance degradation in lithium-ion batteries (LIBs) poses significant challenges to the safety and reliability of energy storage systems. Although many promising methods have been proposed to predict LIB capacity fade, most rely on directly measured capacity values—a requirement that is often impractical in real-world applications. To address this limitation, we propose a Transformer-based multivariate time series (MTS) method for lithium-ion battery capacity prediction. Our approach extracts degradation features from partial charging curves to construct MTS inputs, then leverages Transformer networks to model temporal patterns, from which capacity fade is further predicted. Extensive validation on two large-scale datasets demonstrates superior predictive accuracy against several benchmarks.
关键词
multivariate time series, Lithium-ion battery, capacity prediction, Transformer
报告人
Zixian Wu
Mr.s Anhui University

稿件作者
Zixian Wu Anhui University
Zhiyong Hu Anhui University
Siliang Lu Anhui University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询