Machine Learning-Inspired Analog Circuit Architecture for Motor Signal Feature Extraction and Fault Diagnosis
编号:95 访问权限:仅限参会人 更新:2025-11-10 15:17:14 浏览:9次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Traditional motor fault diagnosis based on digital signal processing relies on analog-to-digital conversion and digital computation, facing issues of heavy computational load and high energy consumption. Inspired by decision trees, this paper proposes a novel pure analog circuit classifier to achieve near-zero-delay fault diagnosis. The core design is that hardware circuits directly process analog signals from accelerometers. An analog filter decision tree is constructed, and the filters cutoff frequency parameters are adjusted through an optimization algorithm to match circuit characteristics, directly extracting features and conducting classification in the analog domain. Results are output as real-time waveforms. The significant advantages of this scheme are completely avoiding the analog-to-digital conversion process, featuring zero-delay response, an efficient circuit structure, and retaining the interpretability of analog circuits. Experiments have confirmed that this method can accurately output diagnostic results, providing a convenient and highly real-time solution for intelligent maintenance of motors and rotating machinery.
关键词
motor fault diagnosis, analog circuit classifier, optimization algorithm, decision tree
报告人
Ling Zheng
Mr.s Anhui University

稿件作者
Ling Zheng Anhui University
Yijun Ren Anhui University
Siliang Lu Anhui University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 10月20日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
South China University of Technology
承办单位
South China University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询