Performance of machine learning models and empirical equations on predicting the scour depth around vibrating pipelines
编号:89 访问权限:仅限参会人 更新:2025-11-03 17:12:43 浏览:4次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Local scour around a vibrating submarine pipeline threatens its structural stability and requires accurate predictive models to ensure its safety. This study evaluates the performance of three standalone Machine Learning (ML) models -- M5 model trees, Adaptive Robust Regression (ARR), Support Vector Regression (SVR), and an ensemble Gradient Boosting (GB) model on scour prediction. Their predictive accuracy is compared against four empirical formulas using an experimental dataset and statistical performance metrics. The results indicate that GB outperforms all other models, achieving the highest r2 and lowest RMSE and MAPE in the training and testing phases. M5 and SVR show moderate accuracy, while ARR exhibits the weakest performance. Empirical equations perform poorly, often significantly overestimating or underestimating scour depth, demonstrating the limited generalization. Correlation analysis highlights that vibration amplitude is the dominant factor. These findings emphasize the superiority of ensemble learning over standalone ML models and empirical equations for improving scour depth predictions.
关键词
暂无
报告人
Zhimeng Zhang
Tianjin University

稿件作者
Zhimeng Zhang Tianjin University
Yee-Meng Chiew Nanyang Technological University
Chunning Ji Tianjin University
Hongwei An The University of Western Australia
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月04日

    2025

    11月07日

    2025

  • 10月20日 2025

    摘要截稿日期

  • 10月20日 2025

    初稿截稿日期

  • 10月30日 2025

    初稿录用通知日期

  • 11月07日 2025

    注册截止日期

主办单位
Hehai University
Chongqing Jiaotong University
承办单位
Hehai University
Chongqing Jiaotong University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询