Unlocking Predictive Potential: A Framework for Strategic Weekly Rainfall Forecasts
编号:107 访问权限:仅限参会人 更新:2025-11-05 17:35:53 浏览:16次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Accurate weekly rainfall predictions are essential for effective disaster prevention and sustainable development. However, the reliability of current forecasting systems declines sharply beyond the short-term horizon, posing challenges for their application in long-term planning and preparedness. To address this limitation, we propose the Windows of Opportunity Identification (WOI) approach, a unified framework that enhances prediction reliability by identifying physical signals as precursors for more precise forecasts within target models. For instance, within the European Centre for Medium-Range Weather Forecasts (ECMWF) model, the WOI method objectively identifies the tropical Madden-Julian Oscillation (MJO) and mid-latitude waves as key precursors for accurately forecasting weekly East Asian Summer Monsoon (EASM) rainfall. When strong WOI signals are detected, prediction accuracy can surpass 0.5 for forecasts extending from week 2 to week 4. This approach illustrates how leveraging physical signals and the capabilities of existing models can significantly enhance medium-range predictive performance.
 
关键词
Sub-seasonal prediction, windows of opportunity identification, sustainable development
报告人
飞 刘
教授 中山大学

稿件作者
飞 刘 中山大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月20日

    2025

    11月24日

    2025

  • 11月10日 2025

    初稿截稿日期

  • 11月24日 2025

    注册截止日期

主办单位
太平洋科学协会
承办单位
Shantou University
Xiamen University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询