Assimilating Observations to Improve Arctic Sea Ice Seasonal Prediction: A Variational Autoencoder Latent Space Particle Filter Approach
编号:136 访问权限:仅限参会人 更新:2025-11-06 17:08:23 浏览:29次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Assimilating observational data is essential for improving Arctic sea ice model prediction, yet the high-dimensional nature of such models poses challenges for applying nonlinear particle filtering methods. To address this, we propose a Latent Space Particle Filter (LSPF) approach that leverages a variational autoencoder (VAE) deep neural network to extract low-dimensional representations of sea ice physical fields. This method compresses the high-dimensional data into a latent subspace, enabling efficient statistical sampling and generating a large number of low-dimensional samples for nonlinear particle filtering. We train the VAE using multiple sea ice reanalysis datasets and conduct historical assimilation experiments using the latest ice-ocean coupled model developed by Princeton University’s Geophysical Fluid Dynamics Laboratory. Results indicate that assimilating satellite observations of sea ice concentration and thickness with LSPF during the winter freezing period significantly reduces model errors, particularly for sea ice thickness. All simulations are extended to September without additional assimilation and evaluated with independent satellite observations and mooring data. Findings further demonstrate that wintertime nonlinear particle filter assimilation can improve prediction skill, especially when performed every three days, reducing model errors by approximately 30%–50%. Therefore, the LSPF method proposed in this study provides a promising and effective solution for nonlinear data assimilation in realistic high-dimensional geoscience applications.
关键词
Data assimilation,Arctic sea ice seasonal prediction,Nonlinear particle filter,Variational autoencoder
报告人
Zhiqiang Chen
Dr Guangdong Ocean University

稿件作者
Zhiqiang Chen Guangdong Ocean University
Delin Li Guangdong Ocean University
Jiping LIU China;School of Atmospheric Sciences; Zhuhai; Sun Yat-sen University;Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月20日

    2025

    11月24日

    2025

  • 11月10日 2025

    初稿截稿日期

  • 11月24日 2025

    注册截止日期

主办单位
太平洋科学协会
承办单位
Shantou University
Xiamen University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询