Nyström-Accelerated Primal LS-SVMs for Structural Dynamics: Breaking the O(an³) Complexity Bottleneck in Vibration Analysis
编号:41 访问权限:仅限参会人 更新:2025-11-19 18:23:48 浏览:48次 口头报告

报告开始:2025年11月22日 14:15(Asia/Shanghai)

报告时间:10min

所在会场:[S2] 分会场二:柔性结构风振控制、工程结构振动控制新进展、桥梁与结构风致振动与控制 [S2-1] 柔性结构风振控制、工程结构振动控制新进展

暂无文件

摘要
A major problem of kernel-based methods (e.g., least squares support vector machines, LS-SVMs) for solving the ordinary differential equations (ODEs) governing structural dynamics (e.g., vibration response analysis) is the prohibitive O(an³) (= 1 for linear systems and > 1 for nonlinear systems) part of their computational complexity with increasing temporal discretization points n. We propose a novel Nyström-accelerated LS-SVMs framework that breaks this bottleneck for structural dynamics problems by reformulating the governing ODEs as primal-space constraints. Specifically, we derive for the first time an explicit Nyström-based mapping and its derivatives from one-dimensional temporal discretization points to a higher m-dimensional feature space (1 < mn), enabling the efficient learning of structural dynamic responses with m-dependent complexity. Numerical experiments on sixteen benchmark problems, including linear and nonlinear structural systems, demonstrate: 1) 10 – 6000 times faster computation than classical LS-SVMs and physics-informed neural networks (PINNs), 2) comparable accuracy to LS-SVMs (< 0.13% relative MAE and RMSE) in predicting dynamic responses while maximum surpassing PINNs by 72% in RMSE, and 3) scalability to = 104 time steps with = 50 features, facilitating long-duration simulation. This work establishes a new paradigm for efficient kernel-based learning in structural dynamics without significantly sacrificing the accuracy of the solution.
 
关键词
暂无
报告人
欢骆
副教授 三峡大学

稿件作者
欢骆 三峡大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月21日

    2025

    11月23日

    2025

  • 11月19日 2025

    初稿截稿日期

  • 11月23日 2025

    注册截止日期

主办单位
华中科技大学
承办单位
华中科技大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询