AI-Enhanced CFG Parsing Framework for Structural Analysis and Threat Detection in Encrypted Network Traffic
编号:12 访问权限:仅限参会人 更新:2025-12-03 21:56:28 浏览:6次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Cutting network traffic has become a standard for secure communication, but it also prevents traditional Infiltration system (ID) that depends on the payload inspection. This article suggests an AI-operated structure that uses Context-Free Grammar (CFG) on the encrypted network package metadata, which protect privacy, to organize protocol structures without decrypt. Parasd outputs are converted to deep learning models, especially the constructed Convolutional Neural Network (CNN) function vector and the Recurrent Neural Network (RNN), to identify the asymmetrical patterns to indicate a sign of malicious activity. A hybrid threat detection engine integrates both models to benefit from spatial and temporary dependence on the traffic patterns. Finally, a real -time user interface (UI) is developed for monitoring, logging and reporting of events. The proposed system shows high accuracy in encrypted traffic -threatening detection, which ensures compliance with the privacy rules.
 
关键词
Encrypted traffic analysis, Context-free grammar pairing, network metadata, CNN, RNN, threatening, privacy protection ID
报告人
CHAITANYA GEDDANAPALLI
STUDENT SRM Institute of Science and Technology *;STUDENT

稿件作者
CHAITANYA GEDDANAPALLI SRM Institute of Science and Technology *;STUDENT
SAI MANI TEJA GRANDHI SRM Institute of Science and Technology *;STUDENT
KOUSHIK KAMISETTY SRM Institute of Science and Technology *;STUDENT
mallikka r SRM Institute of Science and Technology *
Shanmuga Priya S SRM Institute of Science and Technology *
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月06日

    2025

    12月07日

    2025

  • 11月15日 2025

    初稿截稿日期

主办单位
USS
承办单位
SRM Institute of Science and Technology Tiruchirappalli
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询