53 / 2025-11-20 15:47:47
Improved BP Neural-Network-Based Prediction of Shale TOC: Incorporating Morris Sensitivity Analysis
Morris sensitivity analysis;Back Propagation Neural Network;Dropout and L2 regularization; Total organic carbon
摘要待审
鄢文君 / 长江大学
Accurate prediction of total organic carbon (TOC) is essential for shale gas reservoir evaluation, yet remains challenging due to strong geological heterogeneity and limited generalization capability of conventional logging-based methods. To address these issues, this study proposes a sensitivity-guided intelligent prediction framework by integrating Morris global sensitivity analysis with an improved Backpropagation Neural Network (BPNN). The Morris algorithm is first applied to identify the seven most TOC-sensitive logging parameters, enabling dimensionality reduction and reducing multicollinearity. Subsequently, a regularized BPNN incorporating both Dropout and L2 weight penalty is developed to enhance robustness and mitigate overfitting.Application to the Qianfoya Formation shale in the Sichuan Basin demonstrates that the proposed model achieves superior predictive performance, with an R² of 0.9316, outperforming traditional Support Vector Regression (SVR) and Particle Swarm Optimization–Least Squares SVM (PSO-LSSVM), which yield R² values of 0.8247 and 0.8325, respectively. The improved network also exhibits significantly reduced MAE and RMSE, and effectively avoids negative TOC predictions that commonly arise in conventional models. Sensitivity interpretation reveals that AC and DEN provide the strongest responses to TOC variations due to the influence of organic matter enrichment on rock elasticity and bulk density.Overall, the integrated workflow enhances both the interpretability and prediction accuracy of logging-based TOC estimation and provides a practical and geologically consistent approach for unconventional shale gas resource characterization and sweet-spot evaluation.
重要日期
  • 会议日期

    11月27日

    2025

    11月29日

    2025

  • 11月29日 2025

    初稿截稿日期

  • 11月29日 2025

    注册截止日期

主办单位
重庆大学
承办单位
煤矿灾害动力学与控制全国重点实验室
重庆大学资源与安全学院
《Earth Energy Science》/地球能源科学(英文)
中煤科工集团重庆研究院有限公司
协办单位
自然资源部复杂构造区非常规天然气评价与开发重点实验室
重庆市地质矿产勘查开发集团有限公司
InterPore China (国际多孔介质学会中国分会)
贵州大学
西南石油大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询