71 / 2025-11-24 11:05:27
An Intelligent Selection Method of Main Controlling Factors for Tight Gas Reservoirs Productivity Based on Improved Harris Hawk Algorithm
Tight gas; Feature selection; Main controlling factors; Harris hawk optimization; Productivity prediction
摘要待审
徐佳 / 西南石油大学
范翔宇 / 西南石油大学南充校区
赵春兰 / 西南石油大学
张千贵 / 西南石油大学
赵鹏斐 / 西南石油大学
Identifying the main controlling factors of tight gas productivity is essential for accurate forecasting and efficient reservoir development. However, the nonlinear and high-dimensional characteristics of tight gas reservoirs pose challenges for conventional analytical methods. This study proposes an improved Harris hawk optimization algorithm (TVLHHO), which integrates a nonlinear escape energy strategy and a time-varying leader structure, to enhance feature selection performance. The method expands the search space, accelerates convergence, and reduces the risk of local optima. Using a tight sandstone gas field as a case study, preliminary feature screening combined Pearson correlation and XGBoost, and TVLHHO was subsequently applied to identify the optimal controlling factors. Compared with six benchmark algorithms, TVLHHO achieved the fastest convergence and obtained a mean R² exceeding 0.9 in productivity prediction. The selected factors effectively distinguished high- and low-capacity wells, confirming the practicality and robustness of the proposed method. TVLHHO provides a reliable tool for analyzing main controlling factors under complex geological conditions, offering a solid foundation for productivity prediction and optimization in tight gas reservoirs.

 
重要日期
  • 会议日期

    11月27日

    2025

    11月29日

    2025

  • 11月29日 2025

    初稿截稿日期

  • 11月29日 2025

    注册截止日期

主办单位
重庆大学
承办单位
煤矿灾害动力学与控制全国重点实验室
重庆大学资源与安全学院
《Earth Energy Science》/地球能源科学(英文)
中煤科工集团重庆研究院有限公司
协办单位
自然资源部复杂构造区非常规天然气评价与开发重点实验室
重庆市地质矿产勘查开发集团有限公司
InterPore China (国际多孔介质学会中国分会)
贵州大学
西南石油大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询